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Abstract 

Although broad links between climatic factors and coccidioidomycosis have been established, 

the identification of simple and robust relationships linking climatic controls to seasonal timing 

and outbreaks of the disease have been elusive and remain poorly understood. Using an adaptive 

data-oriented method for estimating date of exposure, this paper analyzes hypotheses linking 

climate and dust to fungal growth and dispersion and evaluates their respective roles for Pima 

County, Arizona. Results confirm a strong bimodal disease seasonality that was suspected but 

not previously seen in reported data. Dispersion-related conditions are important predictors of 

coccidioidomycosis incidence during fall, winter and the arid foresummer. However, 

precipitation during the normally arid foresummer 1.5-2 years prior to the season of exposure is 

the dominant predictor of the disease in all seasons, accounting for half of the overall variance. 

Cross-validated models combining antecedent and concurrent conditions explain 80 percent of 

the variance in coccidioidomycosis incidence. 
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Introduction 

Coccidioidomycosis, or valley fever, is caused by inhalation of spores from Coccidioides 

immitis and Coccidioides posadasii. These dimorphic soil fungi are endemic to the deserts of the 

southwestern United States, Mexico and elsewhere in Central and South America (Kolivras et al. 

2001; Fisher et al. 2002). While about 60 percent of people infected with the disease are 

asymptomatic, others experience mild influenza-like symptoms and a small percentage 

experience severe effects and sometimes death resulting from dissemination of the disease to 

other parts of the body (Kolivras et al. 2001). Those at greatest risk for coccidioidomycosis 

infection include immuno-compromised patients, young children and the elderly, and members 

of several ethnic minorities in the United States (Kolivras et al. 2001; Pappagianis 1988). In 

Arizona alone, over 2000 cases per year have been reported (Komatsu et al. 2003), and 

coccidioidomycosis incidence is greater than that for other emerging infectious diseases in the 

region such as West Nile Virus (CDC 2004a). The number of Arizona cases is likely to exceed 

3000 by the end of 2004 (CDC 2004b). 

Environmental conditions appear to have an important impact on Coccidioidomycosis 

incidence. The current Arizona coccidioidomycosis epidemic has been linked to climate 

conditions (Kolivras and Comrie 2003; Komatsu et al. 2003; Park et al. 2005, extending 

Komatsu et al. 2003), while California experienced an epidemic in the 1990s that was possibly 

linked to drought conditions (Jinadu 1995). Initial links between climate conditions and the 

disease were identified several decades ago (Hugenholtz 1957; Maddy 1965). It is only recently 

that further details on climate and coccidioidomycosis have been published (Kolivras and 

Comrie 2003; Komatsu et al. 2003). These studies identified associations linking climate and 

other factors to seasonal patterns of coccidioidomycosis and to interannual variability and trends 
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in the disease. Significant variables included drought indices, lagged precipitation, temperature, 

wind speed and dust during the previous one or more years. The relationships to 

coccidioidomycosis were quite complex, however, perhaps due to disease data issues outlined 

below. This paper aims to identify simple and robust relationships linking climatic controls to 

seasonal timing and outbreaks of the disease, which until now have remained elusive and poorly 

understood. Important public health opportunities exist if environmental factors controlling 

coccidioidomycosis outbreaks and trends can be better comprehended, including the timing and 

degree of mitigation efforts such as soil treatment and the development of an advance warning 

system for public health management. 

Part of the reason for the current state of knowledge has been the lack of high quality 

disease data series. In fact, a major challenge to understanding more about the links between 

climate and infectious disease continues to be the difficulty in obtaining regular time series of 

disease data (NRC 2001). This is especially true for coccidioidomycosis with respect to data on 

Coccidioides in the soil or atmosphere. The current environmental detection method using 

laboratory mice is expensive and time-consuming, and while there is ongoing research into more 

rapid detection techniques (e.g., using polymerase chain reaction analysis to detect the fungus in 

soil samples) it will be a number of years before time series of such data become available. In the 

absence of suitable data on the environmental variability of the fungus itself, there is a need to 

exploit epidemiological data in different ways to better identify the role of environmental 

controlling factors such as climate. Thus, for now, disease incidence data offer the best (and 

only) available multi-year time series for comparison to climatic conditions. 

The use of human disease data to study potential relationships to climate conditions 

introduces numerous methodological and analytical issues related to collection and reporting. 
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Incidence data do not provide a homogeneous time series because of changes in reporting 

requirements, changes in population demographics, and the introduction of new diagnostic tests. 

In addition, the reported data necessarily contain imprecise estimations of disease onset dates due 

to a variety of factors including patient recall, incorrect or delayed diagnoses caused by 

displacement of diagnoses during the respiratory disease season, and the variability in disease 

incubation and onset of symptoms from case to case. 

If these data issues can be dealt with at least partially, the research challenge in using 

human incidence data is to understand the second or third-order connections between the soil 

fungus and reported cases of the disease. There are essentially two hypothesized parts to the role 

of climate (Kolivras and Comrie 2003) that need to be evaluated. First, existing Coccidioides 

spores present in dry soil need increased soil moisture (via precipitation) to grow the fungus, 

followed by a dry period during which fungal hyphae desiccate and form spores. Second, wind 

or other disturbance is required to disperse the spores for inhalation by a host. The relative roles 

of these climate factors in the seasonality and outbreaks of coccidioidomycosis are not clearly 

understood. The principal goals of this paper are therefore to analyze the postulated climate and 

dust relationships to fungal growth and dispersion and evaluate their respective roles. 

Two sub-questions are also considered. First, southern Arizona has a bimodal annual 

precipitation pattern with one peak in summer and one in winter (Sheppard et al. 2002), but 

county-level coccidioidomycosis reports in the past have not clearly reflected an associated 

bimodal coccidioidomycosis pattern (Kolivras and Comrie 2003). Yet, early work and a study 

using student health service data have noted such a pattern (Hugenholtz 1957; Kerrick et al. 

1985). Thus, this paper examines whether recent county-level reports can shed light on the 

existence of a bimodal incidence pattern in reported data. Second, in evaluating climatic controls 
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on coccidioidomycosis, the critical date is the date of exposure (spore inhalation) rather than the 

case report date. A method is required that incorporates this lag as well as the changes in 

coccidioidomycosis reporting characteristics over time. This paper presents such an adaptive 

data-oriented method for estimating date of exposure. 

 

Data and Methods 

Tucson and the surrounding areas of Pima County in Arizona are highly endemic for 

coccidioidomycosis (Kolivras et al. 2001). Pima County coccidioidomycosis case data were 

obtained from the Arizona Department of Health Services for the period 1992-2003. Reporting 

was voluntary at the beginning of this period (Ampel et al. 1998), although the data continuity 

and quality are good relative to previous decades (Kolivras and Comrie 2003). The disease 

became nationally notifiable in 1995 and reporting by laboratories became mandatory at the state 

level in 1997 (Komatsu et al. 2003). While the number of reported cases initially appeared to 

increase as a result, this effect appears to have been minor as incidence continued to grow in an 

ongoing epidemic (Komatsu et al. 2003). 

Pima County annual mid-year population data were obtained from the U.S. Census 

Bureau. Environmental data were obtained for the greater Tucson urban area, which contains 

over 90 percent of the county population. Both precipitation and dust are good potential 

predictors of coccidioidomycosis (Kolivras and Comrie 2003; Komatsu et al. 2003). Monthly 

precipitation data for all five available sites in the Tucson area were obtained from the Western 

Regional Climate Center for 1988-2003. In conjunction with the incidence data, the precipitation 

data enable evaluation of hypothesized soil-moisture - fungal growth relationships. Ambient 

concentrations of atmospheric particulate matter less than 10 µm (PM10) were obtained from the 
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Pima County Department of Environmental Quality for the five stations with data from 1991-

2003. The PM10 data are a direct measure of airborne dust, and because this size threshold 

includes the typical spore size these data should be proportionally related to the hypothesized 

windblown spore concentrations. Precipitation and PM10 values were averaged across sites to 

provide a single time series of the area-wide mean for each. 

With regard to analyzing the hypothesized climatic controls on coccidioidomycosis, the 

most relevant information to extract from the incidence data is the date that each patient most 

likely inhaled the fungal spore (i.e., exposure date). The coccidioidomycosis incidence data 

include three possibly useful dates to approximate exposure date: estimated date of onset of 

symptoms (“onset date”), diagnosis date, and report date (although many cases do not have all 

three dates recorded). Onset date is potentially the most useful of the three, but it is only 

available for about one third of the cases, and that proportion varies considerably over time. 

Ideally, the onset date accounts for some of the variable lag between exposure and reporting; 

although it is imprecise, it is likely the most accurate index of exposure date. Conversely, the 

diagnosis date is more precise but the exposure-to-diagnosis lag, which varies from case to case 

and is longer than the exposure-to-onset lag, has to be estimated in some way. Diagnosis dates 

are available for most cases. Report dates are, de facto, available for all cases but they are the 

most lagged in time from the exposure date; exposure-to-report lags therefore display the 

greatest variability and are least likely to provide useful links to climate. 

Exploration of the various lags and dates indicated no consistent bias or pattern that could 

be satisfactorily corrected via simple adjustments, such as an overall mean onset-to-diagnosis 

delay. Instead, the mean onset-to-diagnosis and onset-to-report lag times were calculated for 

each individual month in the record (rather than averaged across the entire time series). These 
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temporally-adaptive empirical lags were smoothed with a three-month moving average, centered 

on the middle month, and then used to estimate exposure dates. For cases with an onset date, the 

exposure date was estimated to be 14 days earlier to allow for the incubation period (Kolivras 

and Comrie 2003); for cases without an onset date but with a diagnosis date, the exposure date 

was estimated to occur earlier by the number of days for that month-specific onset-to-diagnosis 

lag plus 14; for cases with only a report date, the exposure date was estimated to occur earlier by 

the number of days for that month-specific onset-to-report lag plus 14. For example, a case 

reported on November 24, 2003 might have a diagnosis date of July 24, 2003 and no onset date. 

Based on the mean of other reports with onset dates in November 2003 (actually the October 

through December 2003 mean), the onset-diagnosis lag is 10 days, so this case would be 

estimated to have had an onset date of July 14, and thus an estimated exposure 14 days prior on 

June 30. There were 3283 cases in the data set; 3181 of these had diagnosis dates, but only 1089 

had onset dates. The proportion of the latter each month and the length of lag for either varied 

inconsistently over time, necessitating this set of temporally-adaptive adjustments. Onset-

diagnosis lags had a mean of 12.6, a median of 11.5, a standard deviation of 5.9, a minimum of 

2, and a maximum of 32 days; onset-report lags had respective values of 43.0, 44.0, 19.1, 8 and 

99. Monthly case totals based on estimated exposure were computed and converted to incidence 

rates per 100,000 of population using linearly interpolated monthly population estimates. 

To analyze the lagged relationships and the relative climatological significance of 

different times of year, the data were grouped into seasons. Seasonal analyses are advantageous 

for several reasons: (i) they are a useful way of dividing the year into alternating wet and dry 

periods, (ii) they facilitate identification of recurring times of the year that are important, (iii) 

seasonal aggregation avoids the monthly variability that characterizes the region and leads to 
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overly complex analyses and (iv) it is analytically and conceptually simpler to compute and 

understand seasonal lag relationships. In the southwestern United States, seasons are defined 

principally by precipitation rather than the thermally-based spring, summer, fall and winter 

sequence typical of middle latitude locations (Sheppard et al. 2002). Seasonal groupings are 

widely used for similar kinds of climate analyses (Crimmins and Comrie 2004). Seasons were 

defined by monthly sequences that captured the predominant seasonal maxima and minima for 

each variable. 

Stepwise regression of the 1992-2003 seasonal data was used to model 

coccidioidomycosis rates from concurrent PM10 (hypothetically related to spore dispersion and 

therefore exposure) and concurrent and lagged antecedent precipitation (hypothetically related to 

fungal growth). Previous work has shown that the relevant climate conditions may be different 

for each coccidioidomycosis season (Kolivras and Comrie 2003), and therefore each season was 

modeled separately. Models were cross-validated on independent data points using a leave-one-

out ‘jackknife’ method. Because coccidioidomycosis reporting before 1997 may not have been 

consistent, the same modeling analysis was run on a subset of the data covering just the 

improved reporting period from 1997-2003 for confirmatory purposes. 

 

Results 

Application of the estimated exposure date methodology resulted in a time series of 

coccidioidomycosis incidence, as defined above. An annual plot shows the epidemic in recent 

years, which coincides with an ongoing regional drought as well as variability in PM10 (Figure 

1). The 2003 decrease may end up being less pronounced after some reports recorded later in 

2004 (unavailable at the time these study data were acquired) are estimated to have been 2003 
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exposures. Analysis of similar data for the Phoenix area attributed the increase in 

coccidioidomycosis to climate-related factors (Komatsu et al. 2003). 

Average monthly coccidioidomycosis rates based on estimated exposure dates display 

obvious seasonal behavior (Figure 2), but with greater clarity than in previous studies. A bimodal 

pattern with peaks in June-July and October-November is apparent, along with relatively lower 

incidence in August-September and February-March. PM10 concentrations follow an inverse 

relationship with soil moisture, falling during wet periods and rising during dry periods (Figure 

2). Monthly coccidioidomycosis rates are largely consistent with the hypothesis of increased dust 

exposure leading to increased disease incidence. On the average at least, the less-dusty months of 

the year coincide with lower coccidioidomycosis exposure rates, and elevated rates coincide with 

or follow the dustier months. While it is tempting to draw a similar first-order inverse connection 

between precipitation and incidence at the overall mean monthly level, it is important to recall 

that this is likely valid for the immediate dust-inhibiting role of rainfall (precipitation has a 

strong negative correlation with dust) but not likely for its antecedent fungal growth and 

desiccation role. Thus, although a wet-dry precipitation sequence occurs during the several 

months prior to each of the annual coccidioidomycosis peaks on average, closer examination 

shows that the amount of precipitation and the matching responses as well as the time lags for 

each are inconsistent. This underlines the importance of investigating the role of antecedent 

moisture at time scales longer than a season or year. 

The monthly averages presented in Figure 2 enabled the definition of seasonal groupings 

centered on the periods of maxima and minima. Coccidioidomycosis seasons for estimated 

exposure dates comprise a winter decrease that occurs January through April, a foresummer peak 

that is seen May through July, a monsoon decrease that takes place in August and September, 
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and a fall peak that is experienced October through December. The same seasons were used for 

monthly PM10 concentrations because they had similar periods of maxima and minima, and 

because they needed to match the coccidioidomycosis seasons for analysis. For precipitation, the 

winter peak occurs between December and March, followed by the driest time of the year during 

the arid foresummer from April through June. The monsoon is the most distinctive aspect of the 

region’s climate, bringing rainfall during July, August and September, following which 

conditions become dryer in a brief fall during October and November (Crimmins and Comrie 

2004). Because precipitation is hypothesized to affect fungal growth months or years prior to the 

exposure date, it is not necessary to have precipitation seasons exactly match the monthly 

groupings for the other variables. Thus, for example, it is more meaningful to use July through 

September for monsoon precipitation and relate that seasonal peak to coccidioidomycosis in 

subsequent seasons. For simplicity, the names of the seasons are kept the same across all 

variables. 

Adjusted R2 values for the four seasonal models and standardized (beta) coefficients for 

the variables found to be significant in each model are shown (Table 1). All four models 

explained significantly high to very high proportions of the variance in coccidioidomycosis rates. 

It is notable that the strongest relationships do not occur simply in a wet-dry sequence in the 

season immediately prior to a rise in coccidioidomycosis rates. A remarkable result is the 

positive role of precipitation during the arid foresummer for coccidioidomycosis occurring in all 

subsequent seasons up to two years later. One implication is that precipitation during this hottest 

and driest part of the year (April – June), as opposed to other wetter seasons, is most favorable 

for Coccidioides growth in the environment. This is typically a time of soil desiccation and 

vegetation dormancy, so the ability to grow opportunistically in the foresummer may be a 
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competitive advantage of Coccidioides over other soil biota. A second implication is that fungal 

spores produced after a wet period in the foresummer may accumulate in the soil and remain 

viable for several years. Consistent with this hypothesis, monsoonal precipitation does not appear 

in any model within a three year lag, and in only one at four years. 

Ambient dust levels, as an index of potential spore dispersion, are positively associated 

with concurrent coccidioidomycosis rates in winter and the foresummer. Dust is not a useful 

predictor of coccidioidomycosis rates during the monsoon or the fall. Yet, wetter conditions in 

fall appear to decrease concurrent coccidioidomycosis rates and in the winter immediately 

following, presumably via dispersion inhibition due to greater soil moisture. 

The analysis was repeated on the more reliable 1997-2003 data period to check for 

consistency. This step reduced the modeled n from 12 to 7, which decreased statistical reliability, 

and therefore detailed results are not shown. Nonetheless, although the full set of significant 

variables differed for each model, the results from the shorter period showed some similarities 

with the longer period. Those variables that were significant in both the full period and the later 

period models are emphasized in bold (Table 1). Both sets of models have in common the 

foresummer precipitation one or two years prior to the predicted coccidioidomycosis season, as 

well as concurrent fall precipitation for fall coccidioidomycosis incidence. 

The overall time series of observed and predicted seasonal coccidioidomycosis incidence 

(for the full period) is shown in Figure 3. The combined predictions of all four multivariate 

seasonal models are in close agreement with observations, with an overall cross-validated R2 of 

0.80, and a cross-validated mean absolute error of 0.53 cases per 100,000, or about 19 percent of 

the mean incidence. The proportions of model-oriented (systematic) error versus data-oriented 

(unsystematic) error were 14 and 86 percent respectively (Comrie 1997), implying that the model 
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is well specified and that noisy data are responsible for most of the error. To further isolate the 

role of the foresummer, antecedent foresummer precipitation alone was regressed on 

coccidioidomycosis incidence in fall, winter, foresummer and the monsoon in the relevant period 

1.5-2 years later. The resulting cross-validated R2 between observations and combined 

predictions of all four antecedent foresummer-based models was 0.27. 

 

Concluding Discussion 

The development of a method to estimate Coccidioides spore exposure date from 

coccidioidomycosis incidence data has enabled the production of a relatively homogeneous time 

series. This approach reveals a strong bimodal seasonality of the disease in Pima County, 

Arizona, consistent with earlier findings based on other data (Hugenholtz 1957; Kerrick et al. 

1985), a pattern that until now was not clearly seen in the regular reported data. On average, 

peaks in exposure to the fungal spores occur in June-July and in October-November, consistent 

with the drier and dustier months of the year. Fewer exposures occur in February-March and 

August-September, consistent with the timing of the wetter and less dusty months. 

Multivariate models of the incidence data series indicate that concurrent dispersion 

conditions are important during fall (via precipitation) and in winter and the arid foresummer 

(via PM10). However, the most striking result of this study is the dominant role of precipitation 

during the normally arid foresummer 1.5-2 years prior to the season of exposure. Even when 

considered alone, April through June precipitation accounts for over one quarter of the overall 

variance in subsequent seasonal coccidioidomycosis incidence. When other antecedent and 

concurrent seasonal conditions are included as predictors, the combined seasonal models explain 

a significant and large proportion of the variance in coccidioidomycosis incidence. The model is 
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relatively simple in structure compared to other studies (Kolivras and Comrie 2003, Komatsu et 

al. 2003). The model uses only lagged seasonal precipitation and concurrent seasonal dust and 

precipitation, and yet it clearly captures both the seasonality and the trends in the incidence data. 

The bulk of the error is associated with noise in the data, and therefore future improvements to 

the model are likely to result from improved data and a longer length of record with a larger 

model n. 

An improved understanding of the climatic factors behind outbreaks of 

coccidioidomycosis will enable better timing of environmental sampling for Coccidioides and 

any related mitigation efforts, separation of environmental factors from population and other 

factors affecting outbreaks, and the potential for development of an advance warning system 

prior to an outbreak. The results of this work provide strong support for the two hypothesized 

relationships between climate and coccidioidomycosis, namely fungal growth in the longer term 

and spore dispersion and exposure in the short term. Furthermore, the relative simplicity and 

strength of these results relative to earlier studies (Komatsu et al. 2003; Kolivras and Comrie 

2003) lend considerable confidence to the potential for the development of an operational disease 

forecast model. The ability to define a critical event, such as precipitation during the 

foresummer, might enable mitigation procedures immediately after the event as well as provide a 

useful public health tool with an 18-month lead time on expected incidence of 

coccidioidomycosis. Future work will need to evaluate how specific these findings are to 

southern Arizona versus other regions in which C. posadasii is also endemic, and whether 

similar relationships also apply to C. immitis in California. It will also be valuable to test how a 

more complex model (Komatsu et al. 2003) and this simpler model compare against data from 

other locations and over time. 
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Table 1. Model performance and standardized (beta) coefficients for the four seasonal regression 

models predicting coccidioidomycosis rates from concurrent PM10 and antecedent precipitation, 

1992-2003 (significance in parentheses). 

  Foresummer Monsoon Fall Winter 
Performance     
 Adjusted R2 0.98 (≤0.001) 0.60   (0.006) 0.61   (0.006) 0.95 (≤0.001) 
 Cross-Validated R2 0.95 (≤0.001) 0.66   (0.001) 0.66   (0.001) 0.74 (≤0.001) 
Dust     
 PM10 0.75 (≤0.001)   0.44 (≤0.001) 
Precipitationa     
 Winter-0 N/Ab N/A N/A  
 Fall-0 N/A N/A -0.49c   (0.029) -0.36   (0.004) 
 Monsoon-0 N/A    
 Foresummer-0 0.47 (≤0.001)   0.49 (≤0.001) 
 Winter-1 0.20   (0.023)   -0.33   (0.004) 
 Fall-1 -0.26   (0.030)    
 Monsoon-1     
 Foresummer-1  0.45   (0.044) 0.73   (0.004) 0.56 (≤0.001) 
 Winter-2     
 Fall-2     
 Monsoon-2     
 Foresummer-2 1.36 (≤0.001) 0.64   (0.008)   
 Winter-3     
 Fall-3     
 Monsoon-3     
 Foresummer-3     
 Winter-4     
 Fall-4    N/A 
 Monsoon-4 -0.93 (≤0.001)  N/A N/A 
 Foresummer-4  N/A N/A N/A 
 
aFor precipitation variables, Fall-0 denotes the concurrent fall, Winter-4 denotes the winter 

occurring four years earlier, etc. with those seasons furthest back in time at the bottom of the 
table. 

bSeasons falling before or after the period including the concurrent season through four years 
earlier are marked as not applicable (N/A). 

cEntries in bold indicate model variables that were also present in a 1997-2003 subset analysis. 
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Figure Legends 

 

Figure 1. Annual coccidioidomycosis incidence based on estimated exposure date for Pima 

County, Arizona with total annual precipitation and mean annual PM10 concentrations across 

sites in the Tucson region. 

Figure 2. Mean monthly coccidioidomycosis incidence in Pima County, Arizona based on 

estimated exposure date, with mean monthly precipitation and mean monthly PM10 

concentrations, 1992-2003. 

Figure 3. Observed coccidioidomycosis incidence in Pima County, Arizona and predicted 

incidence from the cross-validated model, based on estimated exposure date. 
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Figure 2. 
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Figure 3. 

 

 


